OUR OWN HIGH SCHOOL, AL WARQA'A, DUBAI

GRADE: X

PHYSICS - REVISION - MAGNETIC EFFECT OF ELECTRIC CURRENT

The magnetic field strength

Near a Straight conductor carrying current	At the center of a Circular loop carrying current	Inside a current carrying solenoid
 Increases with increase in current. Decreases as the distance from the conductor increases. 	 Increases with increase in current Decreases as the radius of the coil increases. Increases as the number of turns of the coil increases. 	 Increases with increase in current Increases as the number of turns of the coil increases. Increases when a soft iron bar is placed inside the solenoid.

Right Hand Thumb Rule Fleming's Left Hand Rule Fleming's Right Hand Rule Magnet Magnet Magnet To find the direction of the magnetic field due to a current carrying conductor. To find the direction of the experienced by a current carrying conductor. To find the direction of the induced current induced current flowing in a closed loop due to electromagnetic induction.

Electromagnet	Permanent magnet	
 The polarity of an electromagnet can be changed by changing the direction of current. 	The polarity of a permanent magnet cannot be changed.	
 The electromagnet can be readily demagnetized by switching of the current. 	They cannot be demagnetized.	
 The strength of an electromagnet can be changed by changing the strength of the current. 	The strength of a permanent magnet canno be altered.	

Direct Current	Alternating Current
 Current which flows in the same direction and of constant magnitude. 	Current which keeps on changing its direction and magnitude in regular intervals of time.
• It is generated by a battery or a cell.	It is generated by a generator or a dynamo.
 Electric power is not transmitted in DC form due to energy loss during transmission. 	Electric power is transmitted over long distances in AC form as the loss of energy is less during transmission.

	Electric Motor	Electric Generator
ca m	works on the principle that a current arrying conductor when placed in a agnetic field experiences a force and tates.	It is based on the phenomenon of electromagnetic induction.
	split ring type commutator is used. converts electrical energy into	A slip ring type commutator is used.
	echanical energy.	It converts mechanical energy into electrical energy.

Electromagnetic induction takes place when

When a magnet moves near a closed coil.	G N S
When a closed coil moves near a magnet.	OSO NS
When the current near a closed coil changes	(1) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C

Domestic Electrical Circuit

Live wire – Cable with red insulation.

Neutral wire – with black insulation

Earth wire – green insulation.

p.d. between live and neutral wire is

220 V

Fuse wire: A safety device used to protect electrical circuit and appliances from high current passing through the circuit.

Earth wire: protects user from severe electrical shock due to leakage of charges from appliances. It provides low resistance conducting path for the excess charge to flow to the earth.

Short circuiting: When live and neutral wire comes in contact, due to insulation being worn out the current increases abruptly resulting in fire accidents.

Overloading: Too many appliances connected to a single power socket.

Force experienced by a current carrying conductor placed in a magnetic field = B I 1 B- strength of the magnetic field, I - current flowing, 1 - length of the conductor.

Electromagnetic induction: The motion of a magnet, with respect to a coil or a changing magnetic field, produces an induced potential difference (electromotive force, emf) which sets up an induced electric current in the coil. Scientist who introduced the phenomena is Michael Faraday.

